ACS Medicinal Chemistry Letters

Effects of the Arg-Pro and Gly-Gly-Nle Moieties on Melanocortin-1 Receptor Binding Affinities of α -MSH Peptides

Jianquan Yang,[†] Liqin Liu,[†] and Yubin Miao^{*,†,‡,§}

[†]College of Pharmacy, [‡]Cancer Research and Treatment Center, [§]Department of Dermatology, University of New Mexico, Albuquerque, New Mexico 87131, United States

Supporting Information

ABSTRACT: The purpose of this study was to examine the effects of the -Arg-Pro- (RP) and -Gly-Gly-Nle- (GGNle) moieties on the melanoma targeting and clearance properties of ^{99m}Tc-peptides. We synthesized four new peptides {Ac-GGNle-CCEHdFRWC-NH₂, Ac-GGNle-CCEHdFRWCRP-NH₂, Ac-CCEHdFRWC-NleGG-NH₂, and Ac-CCEHdFRWCRP-NleGG-NH₂} and determined their melanocortin-1 (MC1) receptor binding affinities in B16/F1 melanoma cells. Then we further examined the biodistribution properties of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and ^{99m}Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ in B16/F1 melanoma-bearing C57 mice. Overall, the -RP- moiety was critical for retaining low nanomolar MC1 receptor binding affinity. The deletion of the -RP- moiety dramatically reduced the receptor binding affinities of the peptides. The N-terminus was a better position than C-terminus for the -GGNle- moiety in retaining the lower renal and liver uptake. High melanoma uptake coupled with fast urinary clearance of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ provided a new insight into the design of new α -melanocyte stimulating hormone (α -MSH) peptides.

KEYWORDS: Melanocortin-1 receptor, 99m Tc-labeled, alpha-MSH peptide, melanoma

ver the past a few years, we and others have reported radiolabeled lactam bridge-cyclized alpha-melanocyte stimulating hormone (α -MSH) peptides to target melanocortin-1 (MC1) receptors for melanoma detection.¹⁻¹¹ Specifically, we have developed two series of radiolabeled lactam bridge-cyclized α -MSH peptides building upon the CycMSH {c[Lys-Nle-Glu-His-DPhe-Arg-Trp-Gly-Arg-Pro-Val-Asp]} and $CycMSH_{hex}$ {c[Asp-His-DPhe-Arg-Trp-Lys]-CONH₂} constructs. Both DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10tetraacetic acid) and NOTA (1,4,7-triazacyclononane-1,4,7triacetic acid) were attached to the peptides for radiolabeling of $^{111}\mbox{In,}~^{67}\mbox{Ga,}$ and $^{64}\mbox{Cu}$ for single photon emission computed tomography (SPECT) and positron emission tomography (PET) imaging of melanoma.⁹⁻¹¹ Among these radiolabeled peptides, ¹¹¹In-DOTA-GGNle-CycMSH_{hex} and ⁶⁴Cu-NOTA-GGNle-CycMSH_{hex} exhibited great potential as imaging probes for SPECT and PET imaging of melanoma due to their high melanoma uptake and fast urinary clearance.9,10

The unique structural features, such as the Asp-Lys lactam bridge and -GGNle- linker, contributed to the favorable melanoma targeting and clearance properties of ¹¹¹In-DOTA-GGNle-CycMSH_{hex} peptide. For instance, as compared to the CycMSH construct, the direct cyclization of the MC1 receptor binding motif {His-DPhe-Arg-Trp} by an Asp-Lys lactam bridge generated a smaller CycMSH_{hex} moiety, which enhanced the melanoma uptake of ¹¹¹In-DOTA-Nle-CycMSH_{hex}.⁷ Furthermore, the introduction of -GG- linker dramatically reduced the renal and liver uptake of ¹¹¹In-DOTA-GGNle-CycMSH_{hex}.⁹ In an attempt to take advantage of the ideal imaging properties of ^{99m}Tc (140 keV γ -photon and $T_{1/2} = 6$ h), we developed several ^{99m}Tc-labeled lactam bridge-cyclized α -MSH peptides

via a bifunctional chelator approach. Specifically, we substituted DOTA/NOTA with hydrazinonicotinamide (HYNIC), mercaptoacetyltriglycine (MAG₃), and Ac-Cys-Gly-Gly-Gly (AcCG₃).¹² Both MAG₃ and AcCG₃ chelators directly yielded complexes with ^{99m}Tc, whereas HYNIC generated a conjugate with ^{99m}Tc in ethylenediaminediacetic acid (EDDA)/tricine solution. ^{99m}Tc(EDDA)-HYNIC-GGNle-CycMSH_{hex} exhibited higher melanoma uptake and faster urinary clearance than ^{99m}Tc-MAG₃-GGNle-CycMSH_{hex} and ^{99m}Tc-AcCG₃-GGNle-CycMSH_{hex} in B16/F1 melanoma-bearing C57 mice.¹²

An integration approach is another way to design ^{99m}Tclabeled cyclic α -MSH peptides.^{13,14} For example, three cysteines were successfully utilized to generate the cyclic ^{99m}Tc-(Arg¹¹)CCMSH {^{99m}Tc-c[Cys-Cys-Glu-His-DPhe-Arg-Trp-Cys-Arg-Pro-Val]-CONH₂} peptide.¹³ Interestingly, both ^{99m}Tc-(Arg¹¹)CCMSH and ^{99m}Tc(EDDA)-HYNIC-GGNIe-CycMSH_{hex} exhibited comparable high melanoma uptake (11.16 ± 1.77 vs 13.23 ± 2.35% ID/g at 4 h postinjection) in B16/F1 melanoma-bearing C57 mice.^{12,13} However, the chemical structures were quite different between ^{99m}Tc-(Arg¹¹)CCMSH and ^{99m}Tc(EDDA)-HYNIC-GGNIe-CycMSH_{hex}. A motif of -Arg-Pro-Val- (RPV) was attached to the C-terminus of (Arg¹¹)CCMSH peptide, whereas a -GGNIelinker was attached to the N-terminus of HYNIC-GGNIe-CycMSH_{hex} peptide. Thus, we were interested in examining whether and how the moieties of -RP- and -GGNIe- could

```
Received: August 7, 2013
Accepted: September 4, 2013
Published: September 4, 2013
```

ACS Medicinal Chemistry Letters

affect the melanoma targeting and clearance properties of ^{99m}Tc-peptides in this study.

In consideration of the structural difference between 99m Tc-(Arg¹¹)CCMSH and 99m Tc(EDDA)-HYNIC-GGNle-CycMSH_{hex}, we designed four new peptides (namely, Ac-GGNle-CCEHdFRWC-NH₂, Ac-GGNle-CCEHdFRWCRP-NH₂, Ac-CCEHdFRWC-NleGG-NH₂, and Ac-CCEHdFRWCRP-NleGG-NH₂) to investigate whether and how the moieties of -RP- and -GGNle- could affect the melanoma targeting and clearance properties of 99m Tc-peptides. The schematic structures of the new peptides are presented in Figure 1. The peptides were synthesized and purified by reverse

Figure 1. Schematic structures of Ac-GGNle-CCEHdFRWC-NH₂ (1), Ac-GGNle-CCEHdFRWCRP-NH₂ (2), Ac-CCEHdFRWC-NleGG-NH₂ (3), and Ac-CCEHdFRWCRP-NleGG-NH₂ (4).

phase-high performance liquid chromatography (RP-HPLC). The overall synthetic yields were 30% for all four peptides. The chemical purities of the peptides were greater than 95% after the HPLC purification. The peptide identities were confirmed by mass spectrometry. The measured molecular weight (MW) was 1351.5 for Ac-GGNle-CCEHdFRWC-NH₂, 1604.5 for Ac-GGNle-CCEHdFRWC-NH₂, 1604.5 for Ac-GGNle-CCEHdFRWCRP-NH₂, 1351.5 for Ac-CCEHdFRWC-NleGG-NH₂, and 1604.5 for Ac-CCEHdFRWCRP-NleGG-NH₂. The measured MWs matched the calculated MWs.

The comparisons in receptor binding affinities between Ac-GGNle-CCEHdFRWC-NH₂/Ac-CCEHdFRWC-NleGG-NH₂ and Ac-GGNle-CCEHdFRWCRP-NH2/Ac-CCEHdFRWCRP-NleGG-NH₂ can suggest whether the -RP- moiety is critical for MC1 receptor binding, whereas the comparisons in receptor binding affinities between Ac-GGNle-CCEHdFRWC-NH₂/Ac-GGNle-CCEHdFRWCRP-NH₂ and Ac-CCEHdFRWC-NleGG-NH₂/Ac-CCEHdFRWCRP-NleGG-NH₂ can indicate which terminus (N- or C-terminus) is better for the -GGNlemoiety in retaining stronger MC1 receptor binding. Thus, we determined the MC1 receptor binding affinities of these four peptides in B16/F1 melanoma cells. The competitive binding curves of the peptides are shown in Figure 2. The IC_{50} value was 27.1 \pm 5.5 nM for Ac-GGNle-CCEHdFRWC-NH₂, 2.0 \pm 0.4 nM for Ac-GGNle-CCEHdFRWCRP-NH₂, 70.9 ± 18.9 nM for Ac-CCEHdFRWC-NleGG-NH₂, and 4.1 \pm 0.6 nM for Ac-CCEHdFRWCRP-NleGG-NH₂, respectively.

The receptor binding results indicated that the -RP- moiety was critical for retaining low nanomolar MC1 receptor binding affinities of the peptides in B16/F1 melanoma cells. The deletion of the -RP- moiety dramatically reduced the receptor binding affinities of the peptides. For instance, Ac-GGNle-

Figure 2. Competitive binding curves of Ac-GGNle-CCEHdFRWC-NH₂ (\bullet), Ac-GGNle-CCEHdFRWCRP-NH₂ (\blacktriangledown), Ac-CCEHdFRWC-NleGG-NH₂ (\blacktriangle), and Ac-CCEHdFRWCRP-NleGG-NH₂ (\blacksquare) in B16/F1 melanoma cells.

CCEHdFRWCRP-NH₂ and Ac-CCEHdFRWCRP-NleGG-NH₂ displayed stronger MC1 receptor binding affinities than Ac-GGNle-CCEHdFRWC-NH₂ and Ac-CCEHdFRWC-NleGG-NH₂. The IC₅₀ value of Ac-GGNle-CCEHdFRWC- $\rm NH_2$ was 13.6 times the $\rm IC_{50}$ value of Ac-GGNle-CCEHdFRWCRP-NH₂, whereas the IC₅₀ value of Ac-CCEHdFRWC-NleGG-NH₂ was 17.3 times the IC₅₀ value of Ac-CCEHdFRWC-NleGG-NH2. Meanwhile, the N-terminus was better than C-terminus for the -GGNle- moiety for stronger MC1 receptor binding. The IC_{50} value of Ac-CCEHdFRWCRP-NleGG-NH $_{\rm 2}$ was 2.1 times the $\rm IC_{50}$ value of Ac-GGNle-CCEHdFRWCRP-NH₂, whereas the IC₅₀ value of Ac-CCEHdFRWC-NleGG-NH₂ was 2.6 times the IC₅₀ value of Ac-CCEHdFRWC-NleGG-NH2. Thus, we further radiolabeled Ac-GGNle-CCEHdFRWCRP-NH₂ and Ac-CCEHdFRWCRP-NleGG-NH₂ with 99m Tc.

Both Ac-GGNle-CCEHdFRWCRP-NH₂ and Ac-CCEHdFRWCRP-NleGG-NH₂ have three cysteines that can directly form a complex with ^{99m}Tc, as well as can simultaneously cyclize the peptide during the radiolabeling of ^{99m}Tc. Ac-GGNle-CCEHdFRWCRP-NH₂ and Ac-CCEHdFRWCRP-NleGG-NH₂ were readily labeled with ^{99m}Tc with greater than 95% radiolabeling yields. Both ^{99m}Tc-peptides were purified and separated from their excess nonlabeled peptides by RP-HPLC. The retention times of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and ^{99m}Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ were 14.8 and 15.0 min, respectively. The specific activities of both ^{99m}Tc-peptides were 1.20 × 10¹⁰ MBq/g.

The melanoma targeting and pharmacokinetic properties of 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and 99m Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ are shown in Tables 1 and 2. 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ displayed slightly higher but comparable melanoma uptake as 99m Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ in B16/F1 melanoma-bearing C57 mice. However, the tumor uptake pattern was different between 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and 99m Tc-Ac-CCEHdFRWCRP-NleGG-NH₂. 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and 99m Tc-Ac-CCEHdFRWCRP-NleGG-NH₂. 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ exhibited its highest tumor uptake of 10.54 \pm 1.6% ID/g at 2 h postinjection, whereas 99m Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ reached its highest tumor uptake of 8.08 \pm 1.61% ID/g at 30 min postinjection. The tumor uptake values gradually decreased to 4.40 \pm 0.91 and 3.88 \pm 0.66% ID/g by 24 h postinjection. The tumor blocking

Table 1. Biodistribution of 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ in B16/F1 Melanoma-Bearing C57 Mice; the Data Were Presented As Percent Injected Dose/Gram or As Percent Injected Dose (Mean \pm SD, n = 5)

	tissues	0.5 h	2 h	4 h	24 h 2	h NDP blockade	
	Percent Injected Dose,						
	tumor	8.90 ± 1.13	10.54 ± 1.60	9.76 ± 1.38	4.40 ± 0.91	$2.05 \pm 0.96*$	
	brain	0.16 ± 0.04	0.05 ± 0.01	0.04 ± 0.02	0.02 ± 0.02	0.04 ± 0.02	
	blood	2.88 ± 1.83	0.76 ± 0.84	0.25 ± 0.26	0.08 ± 0.09	0.61 ± 0.57	
	heart	2.14 ± 0.28	0.55 ± 0.22	0.32 ± 0.07	0.13 ± 0.12	0.59 ± 0.2	
	lung	6.53 ± 2.47	1.74 ± 0.88	0.68 ± 0.14	0.14 ± 0.05	1.76 ± 0.62	
	liver	4.34 ± 0.44	3.19 ± 0.47	2.67 ± 0.61	0.67 ± 0.20	2.70 ± 1.04	
	spleen	3.50 ± 2.39	3.17 ± 2.24	2.20 ± 0.60	2.77 ± 1.42	2.36 ± 2.37	
	stomach	3.17 ± 1.07	1.67 ± 0.16	1.18 ± 0.07	0.33 ± 0.12	0.66 ± 0.31	
	kidneys	13.95 ± 4.57	11.45 ± 2.30	10.50 ± 1.27	1.24 ± 0.28	13.15 ± 3.98	
	muscle	0.94 ± 0.24	0.21 ± 0.24	0.12 ± 0.04	0.06 ± 0.04	0.14 ± 0.05	
	pancreas	0.84 ± 0.29	0.28 ± 0.09	0.15 ± 0.04	0.12 ± 0.06	0.32 ± 0.12	
	bone	2.30 ± 2.61	0.82 ± 0.30	0.31 ± 0.04	0.17 ± 0.12	0.91 ± 0.17	
	skin	4.69 ± 1.00	1.07 ± 0.37	0.72 ± 0.10	0.29 ± 0.12	1.17 ± 0.63	
Percent Injected Dose (%ID)							
	intestines	2.41 ± 0.15	2.74 ± 1.34	1.94 ± 0.38	1.38 ± 0.88	1.81 ± 0.67	
	urine	51.74 ± 5.26	79.15 ± 4.43	79.78 ± 5.11	93.28 ± 2.36	81.22 ± 6.79	

 $p^* < 0.05$ for determining the significance of differences in tumor and kidney uptake between p^{99m} Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ with or without NDP-MSH peptide blockade.

Table 2. Biodistribution of 99m Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ in B16/F1 Melanoma-Bearing C57 Mice; the Data Were Presented As Percent Injected Dose/Gram or As Percent Injected Dose (Mean \pm SD, n = 5)

tissues	0.5 h	2 h	4 h	24 h	2 h NDP blockade				
Percent Injected Dose/Gram (%ID/g)									
tumor	8.08 ± 1.61	7.33 ± 1.72	6.74 ± 1.97	3.88 ± 0.66	$2.83 \pm 1.04*$				
brain	0.23 ± 0.01	0.05 ± 0.01	0.04 ± 0.01	0.01 ± 0.01	0.04 ± 0.02				
blood	4.37 ± 3.11	1.20 ± 0.80	0.73 ± 0.52	0.17 ± 0.21	1.12 ± 0.29				
heart	3.02 ± 0.43	0.82 ± 0.23	0.61 ± 0.14	0.06 ± 0.04	1.46 ± 1.36				
lung	6.88 ± 0.49	1.31 ± 0.63	0.84 ± 0.23	0.27 ± 0.11	3.18 ± 2.73				
liver	10.37 ± 0.93	6.32 ± 0.76	5.27 ± 0.29	0.94 ± 0.21	7.18 ± 2.17				
spleen	3.46 ± 2.21	2.17 ± 0.59	1.91 ± 1.07	0.58 ± 0.36	1.72 ± 1.14				
stomach	9.40 ± 1.83	4.42 ± 1.14	2.99 ± 1.42	1.34 ± 1.57	3.35 ± 1.32				
kidneys	28.31 ± 6.41	29.65 ± 4.28	24.86 ± 3.54	7.40 ± 2.63	30.19 ± 1.00				
muscle	0.78 ± 0.39	0.14 ± 0.03	0.60 ± 0.33	0.10 ± 0.08	0.31 ± 0.38				
pancreas	1.49 ± 0.27	0.52 ± 0.19	0.23 ± 0.12	0.09 ± 0.06	0.52 ± 0.50				
bone	1.68 ± 0.22	0.54 ± 0.17	0.46 ± 0.21	0.30 ± 0.20	0.48 ± 0.13				
skin	4.34 ± 0.51	0.96 ± 0.17	0.10 ± 0.03	0.25 ± 0.09	0.85 ± 0.41				
Percent Injected	l Dose (%ID)								
intestines	6.10 ± 0.42	11.07 ± 1.41	12.25 ± 1.84	3.48 ± 0.87	9.55 ± 0.68				
urine	35.43 ± 3.76	59.57 ± 4.01	66.97 ± 2.69	89.46 ± 2.98	67.67 ± 2.74				
				00					

 $p^{*} < 0.05$ for determining the significance of differences in tumor and kidney uptake between p^{99m} Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ with or without NDP-MSH peptide blockade.

studies (Tables 1 and 2) demonstrated that coinjection of 10 μ g (6.1 nM) of nonradiolabeled NDP-MSH with ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ or ^{99m}Tc-Ac-CCEH-dFRWCRP-NleGG-NH₂ decreased their tumor uptake values to 2.05 \pm 0.96 and 2.83 \pm 1.04% ID/g at 2 h postinjection, demonstrating that the tumor uptake was MC1 receptor-mediated.

Interestingly, despite the similar tumor uptake, ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ exhibited lower renal uptake than ^{99m}Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ at 0.5, 2, 4, and 24 h postinjection. The renal uptake of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ was 49, 37, 42 and 17% of the renal uptake of ^{99m}Tc-Ac-CCEHdFRWCR-NleGG-NH₂ at 0.5, 2, 4, and 24 h postinjection, respectively. The renal uptake values of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and ^{99m}Tc-AcCCEHdFRWCRP-NleGG-NH₂ were 11.45 ± 2.30 and 29.65 ± 4.28% ID/g at 2 h post injection and decreased to 1.24 ± 0.28 and 7.40 ± 2.63% ID/g at 24 h postinjection, respectively. Meanwhile, ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ exhibited lower liver uptake than ^{99m}Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ at 0.5, 2, 4, and 24 h postinjection. The liver uptake of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ was 42, 50, 51, and 71% of the liver uptake of ^{99m}Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ at 0.5, 2, 4, and 24 h post-injection, respectively. The liver uptake values of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ was 42, 50, 51, and 71% of the liver uptake of ^{99m}Tc-Ac-CCEHdFRWCRP-NH₂ at 0.5, 2, 4, and 24 h post-injection, respectively. The liver uptake values of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and ^{99m}Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ were 3.19 ± 0.47 and 6.32 ± 0.76% ID/g at 2 h post injection and decreased to 0.67 ± 0.20 and 0.94 ± 0.21% ID/g at 24 h postinjection, respectively. The differences in renal and liver uptake between ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and

^{99m}Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ suggested that the N-terminus was a better position than the C-terminus for the -GGNle- moiety in retaining the lower renal and liver uptake.

^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ exhibited faster whole-body clearance than 99mTc-Ac-CCEHdFRWCRP-NleGG-NH₂. Approximately 79% of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH2 radioactivity and 60% of 99mTc-Ac-CCEHdFRWCRP-NleGG-NH2 radioactivity cleared through the urinary system by 2 h postinjection (Tables 1 and 2). At 24 h postinjection, 93% of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ and 89% of ^{99m}Tc-Ac-CCEHdFRWCRP-NleGG-NH₂ activity cleared out the body. Since 99mTc-Ac-GGNle-CCEHdFRWCRP-NH₂ exhibited more favorable tumor targeting and clearance properties than 99mTc-Ac-CCEHdFRWCRP-NleGG-NH₂, we further examined the melanoma imaging property of 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂. Whole-body SPECT/CT image of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ is presented in Figure 3. Flank B16/F1 melanoma lesions were clearly visualized

Figure 3. Representative whole-body SPECT/CT image of 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ in a B16/F1 melanoma-bearing C57 mouse at 2 h postinjection. The tumor lesions (T) are highlighted with an arrow on the image.

by SPECT using 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ as an imaging probe. Recent publications^{15,16} have described proliferative and invasive melanoma cells and addressed the

heterogeneity issue in melanoma. The SPECT image showed heterogeneous distribution of radioactivity in melanoma, which was likely related to the heterogeneous expressions of MC1 receptors on melanoma cells. Furthermore, we determined the urinary metabolites of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ at 2 h postinjection. The urinary metabolites of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ are shown in Figure 4. Approximately 52% of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ remained intact in the urine at 2 h postinjection, while 48% of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ was transformed to a more hydrophobic compound.

In summary, four new peptides were evaluated to examine the effects of the -RP- and -GGNle- moieties on the melanoma targeting and clearance properties of ^{99m}Tc-peptides. The -RPmoiety was critical for retaining low nanomolar MC1 receptor binding affinity. The deletion of the -RP- moiety dramatically reduced the receptor binding affinities of the peptides. The Nterminus was a better position than C-terminus for the -GGNle- moiety in retaining the lower renal and liver uptake. High melanoma uptake coupled with fast urinary clearance of ^{99m}Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ provided a new insight into the design of new α -MSH peptides.

ASSOCIATED CONTENT

Supporting Information

Experimental details for peptide synthesis, in vitro competitive binding assay, radiolabeling, biodistribution and imaging studies, and urinary metabolites analysis. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author

*(Y.M.) E-mail: ymiao@salud.unm.edu. Phone: (505) 925-4437. Fax: (505) 272-6749.

Funding

This work was supported in part by the NIH grant NM-INBRE P20RR016480/P20GM103451 and UNM RAC Award. The images were generated by the KUSAIR established with funding from the W. M. Keck Foundation and the UNM Cancer Research and Treatment Center (NIH P30 CA118100).

Notes

The authors declare no competing financial interest.

ACKNOWLEDGMENTS

We appreciate Dr. Fabio Gallazzi for his technical assistance.

Figure 4. Radioactive HPLC profile of a urine sample of a B16/F1 melanoma-bearing C57 mouse at 2 h postinjection of 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂. The arrow indicates the retention time (14.8 min) of the original compound of 99m Tc-Ac-GGNle-CCEHdFRWCRP-NH₂ prior to the tail vein injection.

REFERENCES

(1) Miao, Y.; Gallazzi, F.; Guo, H.; Quinn, T. P.¹¹¹In-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide analogues for melanoma imaging. *Bioconjugate Chem.* **2008**, *19*, 539–547.

(2) Raposinho, P. D.; Correia, J. D.; Alves, S.; Botelho, M. F.; Santos, A. C.; Santos, I. A ^{99m}Tc(CO)₃-labeled pyrazolyl- α -melanocyte-stimulating hormone analog conjugate for melanoma targeting. *Nucl. Med. Biol.* **2008**, *35*, 91–99.

(3) Guo, H.; Shenoy, N.; Gershman, B. M.; Yang, J.; Sklar, L. A.; Miao, Y. Metastatic melanoma imaging with an ¹¹¹In-labeled lactam bridge-cyclized alpha-melanocyte-stimulating hormone peptide. *Nucl. Med. Biol.* **2009**, *36*, 267–276.

(4) Guo, H.; Yang, J.; Gallazzi, F.; Prossnitz, E. R.; Sklar, L. A.; Miao, Y. Effect of DOTA position on melanoma targeting and pharmacokinetic properties of ¹¹¹In-labeled lactam bridge-cyclized α -melanocyte stimulating hormone peptide. *Bioconjugate Chem.* **2009**, 20, 2162–2168.

(5) Raposinho, P. D.; Xavier, C.; Correia, J. D.; Falcao, S.; Gomes, P.; Santos, I. Melanoma targeting with alpha-melanocyte stimulating hormone analogs labeled with fac- $[^{99m}Tc(CO)_3]^+$: effect of cyclization on tumor-seeking properties. J. Biol. Inorg. Chem. **2008**, 13, 449–459.

(6) Guo, H.; Yang, J.; Shenoy, N.; Miao, Y. Gallium-67-labeled lactam bridge-cyclized alpha-melanocyte stimulating hormone peptide for primary and metastatic melanoma imaging. *Bioconjugate Chem.* **2009**, *20*, 2356–2363.

(7) Guo, H.; Yang, J.; Gallazzi, F.; Miao, Y. Reduction of the ring size of radiolabeled lactam bridge-cyclized alpha-MSH peptide resulting in enhanced melanoma uptake. *J. Nucl. Med.* **2010**, *51*, 418–426.

(8) Morais, M.; Oliveira, B. L.; Correia, J. D.; Oliveira, M. C.; Jiménez, M. A.; Santos, I.; Raposinho, P. D. Influence of the bifunctional chelator on the pharmacokinetic properties of 99m Tc-(CO)₃-labeled cyclic α -melanocyte stimulating hormone analog. *J. Med. Chem.* **2013**, *56*, 1961–1973.

(9) Guo, H.; Yang, J.; Gallazzi, F.; Miao, Y. Effects of the amino acid linkers on melanoma-targeting and pharmacokinetic properties of indium-111-labeled lactam bridge-cyclized α -MSH peptides. *J. Nucl. Med.* **2011**, 52, 608–616.

(10) Guo, H.; Miao, Y. Cu-64-labeled lactam bridge-cyclized alpha-MSH peptides for PET imaging of melanoma. *Mol. Pharmaceutics* **2012**, *9*, 2322–2330.

(11) Guo, H.; Gallazzi, F.; Miao, Y. Ga-67-labeled lactam bridgecyclized alpha-MSH peptides with enhanced melanoma uptake and reduced renal uptake. *Bioconjugate Chem.* **2012**, *23*, 1341–1348.

(12) Guo, H.; Gallazzi, F.; Miao, Y. Design and evaluation of new Tc-99m-labeled lactam bridge-cyclized alpha-MSH peptides for melanoma imaging. *Mol. Pharmaceutics* **2013**, *10*, 1400–1408.

(13) Miao, Y.; Benwell, K.; Quinn, T. P. ^{99m}Tc- and ¹¹¹In-labeled alpha-melanocyte-stimulating hormone peptides as imaging probes for primary and pulmonary metastatic melanoma detection. *J. Nucl. Med.* **2007**, *48*, 73–80.

(14) Chen, J.; Cheng, Z.; Hoffman, T. J.; Jurisson, S. S.; Quinn, T. P. Melanoma-targeting properties of ^{99m}technetium-labeled cyclic alphamelanocyte-stimulating hormone peptide analogues. *Cancer Res.* **2000**, *60*, 5649–5658.

(15) Hoek, K. S.; Eichhoff, O. M.; Schlegel, N. C.; Döbbeling, U.; Kobert, N.; Schaerer, L.; Hemmi, S.; Dummer, R. In vivo switching of human melanoma cells between proliferative and invasive states. *Cancer Res.* **2008**, *68*, 650–656.

(16) Hoek, K. S. DNA microarray analyses of melanoma gene expression: a decade in the mines. *Pigment Cell Res.* 2007, 20, 466–484.